THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017)

 Tutorial 2

 Tutorial 2}

Tongou Yang

This tutorial is mainly devoted to the application of derivatives.

1. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and is differentiable on (a, b).
(a) State the mean value theorem.
(b) (Optional) It should be noted that the condition that f is real valued is necessary. For a counterexample, consider the function $f:[0,2 \pi] \rightarrow \mathbb{C}$ defined by $f(\theta):=e^{i \theta}$. Then $f(0)=f(2 \pi)$, but there is no $\theta \in(0,2 \pi)$ such that $f^{\prime}(\theta)=0$.
(c) Suppose $f^{\prime}(c) \geq 0$ for any $c \in(a, b)$. Then f is monotonically increasing on $[a, b]$.
(d) Conversely, suppose $f^{\prime}(c)<0$ for some $c \in(a, b)$. Then we have shown last time that f is not increasing on $[a, b]$.
(e) Suppose now $f^{\prime}(c)>0$ for any $c \in(a, b)$. Then show that f is strictly increasing on $[a, b]$.
(f) However, this time the converse is not true. Provide a counterexample.
(g) Using differentiation and monotonicity, compare the values of e^{π} and π^{e} without a calculator.
2. (a) Show that $|\sin (x)-\sin (y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
(b) Show that $\cos (x)>1-\frac{x^{2}}{2}$ for all $x>0$.
(c) Show that for $x>1, \frac{x-1}{x}<\ln x<x-1$.
(d) Show that for any $0<a<b$, there is $c \in(a, b)$ such that $\sqrt{c}=\frac{\sqrt{a}+\sqrt{b}}{2}$.
(e) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable, and that $\left|f^{\prime}(x)\right| \leq 50$ for all $x \in \mathbb{R}$. Given that $f(1997)=10000$, compute the following value:

$$
\inf \{f(2047): \text { all } f \text { 's satisfying the above conditions }\}
$$

and provide an example such that a minimum can be attained.
3. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and is differentiable on (a, b).
(a) Show that if f attains a local maximum (minimum) at $c \in(a, b)$, then we must have $f^{\prime}(c)=0$. However, give an example to show that the converse is false.
(b) Let a, b be two positive numbers and $p \geq 1$ be a real number. Show that

$$
a^{p}+b^{p} \leq(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)
$$

(c) (Young's inequality) Let a, b be two positive numbers and $p, q>1$ be two real numbers satisfying $\frac{1}{p}+\frac{1}{q}=1$. Show that

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

4. (a) State the L'Hospital's Rule.
(b) Compute the limit $\lim _{x \rightarrow 0^{+}} x^{x}$.
(c) Note that the converse of L'Hospital's Rule fails in the sense of following example:
Consider $f(x):=x^{2} \sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0):=0, g(x):=\sin x$. Then $\lim _{x \rightarrow 0} f(x)=0=\lim _{x \rightarrow 0} g(x)=0$ so this is an indeterminate form. Note that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0
$$

but this limit cannot be evaluated using L'Hospital Rule, since we have

$$
\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)} \text { does not exist }
$$

(d) Show by L'Hospital Rule that whenever $f^{\prime \prime}(x)$ exists and is continuous in \mathbb{R}, we have

$$
\lim _{t \rightarrow 0} \frac{f(x+t)+f(x-t)-2 f(x)}{t^{2}}=f^{\prime \prime}(x)
$$

This is useful because it provides us a way to represent higher order derivatives with no reference to intermediate derivatives.
Give an example such that the limit on the left and side exists but f is not even continuous at x.

Remarks: Let a, b be two positive numbers and $p, q>1$ be two real numbers satisfying $\frac{1}{p}+\frac{1}{q}=1$. Show that

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Solution:

An equivalent statement to the one we want to prove is the following:

$$
\frac{a}{b^{q-1}} \leq \frac{1}{p} \cdot \frac{a^{p}}{b^{q}}+\frac{1}{q}
$$

(divide both sides by b^{q}).
Let $t=\frac{a^{p}}{b^{q}}$. Then $t^{\frac{1}{p}}=\frac{a}{b^{q-1}}$, where we have used the assumption that $\frac{1}{p}+\frac{1}{q}=1$.
We want to show that

$$
t^{\frac{1}{p}}-\frac{1}{p} t \leq \frac{1}{q}
$$

Let $f(t)=t^{\frac{1}{p}}-\frac{1}{p} t$. Then $f(1)=1-\frac{1}{p}=\frac{1}{q}$. If we can show that this is the maximum of $f(t)$ when $t \geq 0$, we are done.

$$
f^{\prime}(t)=\frac{1}{p} t^{\frac{1}{p}-1}-\frac{1}{p}=\frac{1}{p}\left(t^{-\frac{1}{q}}-1\right)
$$

When $t \leq 1$ we see that $f^{\prime}(t) \geq 0$ and similarly when $t \geq 1$, we see that $f^{\prime}(t) \leq 0$. Thus, $\frac{1}{q}$ is a local max of $f(t)$ attained at $t=1$. However, this is the unique critical point of f and we see that f decreases when t moves away from 1 . Hence f attains a global maximum at $t=1$, and hence

$$
t^{\frac{1}{p}}-\frac{1}{p} t \leq \frac{1}{q}
$$

Now substituting back in $t=\frac{a^{p}}{b^{q}}$ we get Young's Inequality to come out with some algebraic manipulations.

